We love eBooks
    Descargar Probabilistic Graphical Models: Principles and Techniques (Adaptive Computation and Machine Learning series) pdf, epub, ebook
    Editorial

    Este sitio es seguro

    Usted está en un sitio seguro, habilitado para SSL. Todas nuestras fuentes son constantemente verificadas.

    Probabilistic Graphical Models: Principles and Techniques (Adaptive Computation and Machine Learning series)

    Por Daphne Koller

    ¿Qué piensas sobre este eBook?

    Acerca de este libro electrónico

    Most tasks require a person or an automated system to reason -- to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
    Descargar eBook Link updated in 2017
    Tal vez usted será redirigido a otro sitio web
    Gracias y bienvenidos a nuestra lista de newsletter! Ops, ya se encuentra en nuestra lista.

    Relacionado con este libro electrónico

    Explorar colecciones Buscar eBooks similares

    Permanecer conectado a nosotros

    Síguenos en las redes sociales o suscribirse a nuestro boletín de noticias para mantener actualizada sobre el mundo dos libros electrónicos.

    Explorar libros electrónicos

    Ver todas las colecciones de eBooks

    Colecciones es la manera fácil de explorar nuestro directorio de libros electrónicos.