Universitat Oberta de Catalunya. 2002. 78 p.
Muchos problemas técnicos y científicos requieren la resolución de sistemas de ecuaciones lineales. Es un tema fundamental para todas las disciplinas que utilizan las matemáticas de una manera u otra. En muchos problemas existe una dependencia entre las diferentes magnitudes o variables que intervienen y a menudo la planteamos en forma de ecuación lineal. Otras veces representa una buena aproximación al problema objeto de estudio. En este módulo estudiaremos de forma sistemática los sistemas de ecuaciones lineales. Pero para profundizar en su conocimiento, abordaremos reviamente el estudio de las matrices y los vectores como tablas de números. Este estudio nos conducirá a introducir la estructura de espacio vectorial, que tiene valor por sí misma y se aplica a muchos campos como, por ejemplo, los gráficos 3D. Estudiaremos a continuación el método de Gauss para resolver efectivamente los sistemas.
Muchos problemas técnicos y científicos requieren la resolución de sistemas de ecuaciones lineales. Es un tema fundamental para todas las disciplinas que utilizan las matemáticas de una manera u otra. En muchos problemas existe una dependencia entre las diferentes magnitudes o variables que intervienen y a menudo la planteamos en forma de ecuación lineal. Otras veces representa una buena aproximación al problema objeto de estudio. En este módulo estudiaremos de forma sistemática los sistemas de ecuaciones lineales. Pero para profundizar en su conocimiento, abordaremos reviamente el estudio de las matrices y los vectores como tablas de números. Este estudio nos conducirá a introducir la estructura de espacio vectorial, que tiene valor por sí misma y se aplica a muchos campos como, por ejemplo, los gráficos 3D. Estudiaremos a continuación el método de Gauss para resolver efectivamente los sistemas.